[[File:Laser-microchannel experiment.jpg|thumb|upright=3|center|Left: Laser-generated proton source; Right: Laser microchannel experiment. Photo credit by Gerrit Bruhaug and the LLE.<ref>Laboratory for Laser Energetics. The photo is also found in Mr. Bruhaug's thesis: [https://www.lle.rochester.edu/publications/lle-theses/ Laser-Driven Relativistic Electron and Terahertz Radiation Sources for HED Experiments].
[[File:Laser-microchannel experiment.jpg|thumb|upright=3|center|Left: Laser-generated proton source; Right: Laser microchannel experiment. Photo credit by Gerrit Bruhaug and the LLE.<ref>Laboratory for Laser Energetics. The photo is also found in Dr. Bruhaug's thesis: [https://www.lle.rochester.edu/publications/lle-theses/ Laser-Driven Relativistic Electron and Terahertz Radiation Sources for HED Experiments].
<div class="toccolours mw-collapsible mw-collapsed" style="width:97%; overflow:auto;"><div style="font-weight:bold;line-height:1.6;"></div><div class="mw-collapsible-content"><b>Summary:</b> The picture on the left is a laser-generated Target Normal Sheath Acceleration proton source. A relativistically intense laser hits a foil and blows out a huge jet of protons (and electrons) at MeV energies.
<div class="toccolours mw-collapsible mw-collapsed" style="width:97%; overflow:auto;"><div style="font-weight:bold;line-height:1.6;"></div><div class="mw-collapsible-content"><b>Summary:</b> The picture on the left is a laser-generated Target Normal Sheath Acceleration proton source. A relativistically intense laser hits a foil and blows out a huge jet of protons (and electrons) at MeV energies.
Revision as of 13:52, 23 April 2024
Left: Laser-generated proton source; Right: Laser microchannel experiment. Photo credit by Gerrit Bruhaug and the LLE.[1]
Summary: The picture on the left is a laser-generated Target Normal Sheath Acceleration proton source. A relativistically intense laser hits a foil and blows out a huge jet of protons (and electrons) at MeV energies.
The reddish one on the right is a laser-microchannel experiment. A relativistically intense laser is shot at so-called "microchannel array" targets that have ultratiny tubes that experimenters try and get the beam down. Crazy physics then proceeds to happen with high-energy electrons, lots of THz and lots of x-rays made.